"Ancient Scars" --Our Planet's Telltale Traces of Collisions With Dark Matter
Mystery Signal from the Dawn of the Universe --"May Unveil a New Physics" (Today's Top Science News)

"Missed the Cut" --Infrared Chemistry Scan Nixes Earth's Alien-Twin Candidate

 

Eso1736a-rotated

 

Last autumn, the world was excited by the discovery of an exoplanet called Ross 128 b, which is just 11 light years away from Earth. New work from a team led by Diogo Souto of Brazil's Observatório Nacional and including Carnegie's Johanna Teske has for the first time determined detailed chemical abundances of the planet's host star, Ross 128. Using the Sloan Digital Sky Survey's APOGEE spectroscopic instrument, the team measured the star's near-infrared light to derive abundances of carbon, oxygen, magnesium, aluminum, potassium, calcium, titanium, and iron.

 

Understanding which elements are present in a star in what abundances can help researchers estimate the makeup of the exoplanets that orbit them, which can help predict how similar the planets are to the Earth.

 

"Until recently, it was difficult to obtain detailed chemical abundances for this kind of star," said lead author Souto, who developed a technique to make these measurements last year.

Like the exoplanet's host star Ross 128, about 70 percent of all stars in the Milky Way are red dwarfs, which are much cooler and smaller than our Sun. Based on the results from large planet-search surveys, astronomers estimate that many of these red dwarf stars host at least one exoplanet. Several planetary systems around red dwarfs have been newsmakers in recent years, including Proxima b, a planet which orbits the nearest star to our own Sun, Proxima Centauri, and the seven planets of TRAPPIST-1, which itself is not much larger in size than our Solar System's Jupiter.

"The ability of APOGEE to measure near-infrared light, where Ross 128 is brightest, was key for this study," Teske said. "It allowed us to address some fundamental questions about Ross 128 b's `Earth-like-ness'," Teske said.

When stars are young, they are surrounded by a disk of rotating gas and dust from which rocky planets accrete. The star's chemistry can influence the contents of the disk, as well as the resulting planet's mineralogy and interior structure. For example, the amount of magnesium, iron, and silicon in a planet will control the mass ratio of its internal core and mantle layers.

The team determined that Ross 128 has iron levels similar to our Sun. Although they were not able to measure its abundance of silicon, the ratio of iron to magnesium in the star indicates that the core of its planet, Ross 128 b, should be larger than Earth's.

Because they knew Ross 128 b's minimum mass, and stellar abundances, the team was also able to estimate a range for the planet's radius, which is not possible to measure directly due to the way the planet's orbit is oriented around the star.

Knowing a planet's mass and radius is important to understanding what it's made of, because these two measurements can be used to calculate its bulk density. What's more, when quantifying planets in this way, astronomers have realized that planets with radii greater than about 1.7 times Earth's are likely surrounded by a gassy envelope, like Neptune, and those with smaller radii are likely to be more-rocky, as is our own home planet.

Lastly, by measuring the temperature of Ross 128 and estimating the radius of the planet the team was able to determine how much of the host star's light should be reflecting off the surface of Ross 128 b, revealing that our second-closest rocky neighbor likely has a temperate climate.

"It's exciting what we can learn about another planet by determining what the light from its host star tells us about the system's chemistry," Souto said. "Although Ross 128 b is not Earth's twin, and there is still much we don't know about its potential geologic activity, we were able to strengthen the argument that it's a temperate planet that could potentially have liquid water on its surface."

The Daily Galaxy via Carnegie Institution for Science

Most Viewed Space & Science News

Homo Naledi, Newly Discovered Species --"Maybe We've Had the Story of Human Evolution Wrong the Whole Time"

Stephen Hawking's Great Question --"Why Isn't the Milky Way Crawling With Mechanical or Biological Life?"

"Alien Minds" --'Artificial Intelligence Is Already Out There, and It's Billions of Years Old' (VIDEO)

"Point of No Return" --MIT Scientist Predicts the Event Horizon for Earth's 6th Mass Extinction 

A Neutron Star Collision in Our Milky Way Neighborhood Could Destroy Earth

 "300-Million Nuclear Bombs" --New Insights Into Global Impact of Titanic Chicxulub Mass-Extinction Event

Stephen Hawking: Wake Up, Science Deniers! --"Earth is Morphing into Venus" (WATCH Today's 'Galaxy' Stream)

"Evolutionary Leap?" AI is Mimicing the Human Brain --"But Several Orders of Magnitude Faster and More Efficiently

China Creates a Laser of Mind-Boggling Power --"Could Rip Space Asunder, Breaking the Vacuum"

"Stop Saying That Dinosaurs Went Extinct. They Didn't"

 

 

Comments

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)