Today's "Planet Earth Report" --The Bitcoin Mystery That’s Rocking South Korea
New NASA Map Shows Antarctica Rapidly Melting --"Suggests That We’re on Thin Ice"

"Will It Defy Einstein's Theory & Laws of Physics?" --Strange Mystery Star Orbiting Milky Way's Supermassive Black Hole




"We have been waiting 16 years for this," said Devin Chu with UCLA's Galactic Center Group. "We are anxious to see how the star will behave under the black hole's violent pull. Will S0-2 follow Einstein's theory or will the star defy our current laws of physics? We will soon find out!"

A new study sheds more light on the strange birth of S0-2 and its stellar neighbors in the S-Star Cluster. The fact that these stars exist so close to the supermassive black hole is unusual because they are so young; how they could've formed in such a hostile environment is a mystery.


"Star formation at the Galactic Center is difficult because the brute strength of tidal forces from the black hole can tear gas clouds apart before they can collapse and form stars," said Tuan Do, deputy director of the Galactic Center Group.

"S0-2 is a very special and puzzling star," said Chu. "We don't typically see young, hot stars like S0-2 form so close to a supermassive black hole. This means that S0-2 must have formed a different way."

Maunakea, Hawaii- Astronomers have the "all-clear" for an exciting test of Einstein's Theory of General Relativity, thanks to a new discovery about S0-2's star status.

Up until now, it was thought that S0-2 may be a binary, a system where two stars circle around each other. Having such a partner would have complicated the upcoming gravity test.

The center of our Milky Way Galaxy shown in the NRAO image above is anchored by a black hole that is nearly 5 million times the mass of our Sun. Surrounding it is a chaotic city of stars, gas, and dust that we call Sagittarius A. The stacked false-color X-ray, infrared, and radio images into this single picture to show the different structures hidden inside the core of our Galaxy. X-rays (purple) radiate from the super-hot gas trapped in the black hole’s grasp. The surrounding dust is heated by friction as it chaotically orbits around the black hole and then glows in infrared light (gold). And the enormous pools and three-armed rivers of gas shine in radio light (oranges and reds) to trace the complexity of magnetic fields in this violent neighborhood.

The orbit of S0-2 (light blue) located near the Milky Way's supermassive black hole will be used to test Einstein's Theory of General Relativity and generate potentially new gravitational models.


But in a study published recently in The Astrophysical Journal, a team of astronomers led by a UCLA scientist from Hawaii has found that S0-2 does not have a significant other after all, or at least one that is massive enough to get in the way of critical measurements that astronomers need to test Einstein's theory.

The researchers made their discovery by obtaining spectroscopic measurements of S0-2 using W. M. Keck Observatory's OH-Suppressing Infrared Imaging Spectrograph (OSIRIS) and Laser Guide Star Adaptive Optics.

"This is the first study to investigate S0-2 as a spectroscopic binary," said lead author Devin Chu of Hilo, an astronomy graduate student with UCLA's Galactic Center Group. "It's incredibly rewarding. This study gives us confidence that a S0-2 binary system will not significantly affect our ability to measure gravitational redshift."

Einstein's Theory of General Relativity predicts that light coming from a strong gravitational field gets stretched out, or "redshifted." Researchers expect to directly measure this phenomenon beginning in the spring as S0-2 makes its closest approach to the supermassive black hole at the center of our Milky Way galaxy.

This will allow the Galactic Center Group to witness the star being pulled at maximum gravitational strength - a point where any deviation to Einstein's theory is expected to be the greatest.

"It will be the first measurement of its kind," said co-author Tuan Do. "Gravity is the least well-tested of the forces of nature. Einstein's theory has passed all other tests with flying colors so far, so if there are deviations measured, it would certainly raise lots of questions about the nature of gravity!"

There are several theories that provide a possible explanation, with S0-2 being a binary as one of them. "We were able to put an upper limit on the mass of a companion star for S0-2," said Chu. This new constraint brings astronomers closer to understanding this unusual object.

"Stars as massive as S0-2 almost always have a binary companion. We are lucky that having no companion makes the measurements of general relativistic effects easier, but it also deepens the mystery of this star," said Do.

The Galactic Center Group now plans to study other S-Stars orbiting the supermassive black hole, in hopes of differentiating between the varying theories that attempt to explain why S0-2 is single.

The Daily Galaxy via M.W. Keck Observatory


Recommended Space & Science Headlines

"Alien Minds" --'Artificial Intelligence Is Already Out There, and It's Billions of Years Old' (VIDEO)

Stephen Hawking: Wake Up, Science Deniers! --"Earth is Morphing into Venus" (WATCH Today's 'Galaxy' Stream)

"Evolutionary Leap?" AI is Mimicing the Human Brain --"But Several Orders of Magnitude Faster and More Efficiently

China Creates a Laser of Mind-Boggling Power --"Could Rip Space Asunder, Breaking the Vacuum"

"Stop Saying That Dinosaurs Went Extinct. They Didn't"

 "300-Million Nuclear Bombs" --New Insights Into Global Impact of Titanic Chicxulub Mass-Extinction Event



Assuming it was at one time a binary, but it's companion has already been consumed, do they have enough data to determine this hasn't happened?

What if galaxies are formed by the evaporation of a black hole? What if the universe is like a fireworks show? The black holes left the singularity and began evaporating hence every galaxy has a black hole, young stars can form near the center, and there is a notable absence of 'matter clouds' in the inter-galactic void (which allows us to actually see through the intergalactic void to distant galaxies, its not a soup or cloud of uncollected matter). The universe did not start as a dust ball explosion that later gravitationally congealed, it started as unstable hyper-concentrated matter particles, dense areas of absolute zero, that could not remain gravitationally compact once exposed to even the smallest amounts of energy. Pieces began to evaporate, perhaps aided by spin. Hence, galaxies and even the big bang may be the failure of absolute zero objects sent spinning or exposed to energy. The universe is a great unraveling.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)