Search for Elusive Dark Matter Side of the Universe Dims --"Its Nature Remains Completely Obscure" (VIDEO)
The Alien Observatory: "NASA is Using Earth as an Exoplanet in Search for Alien Life"

"Attempt No Voyage Here!" Milky Way Harbors 100 Million Black Holes --'There are Tens of Millions of these Dark Enigmatic Objects Each the Size of 30 Suns' (Today's Most Popular)

 
Black-hole

 

"The weirdness of the LIGO discovery" --The detection of gravitational waves created by the merger of two 30-solar-mass black holes (image below) had astronomers asking just how common are black holes of this size, and how often do they merge?

After conducting a cosmic inventory of sorts to calculate and categorize stellar-remnant black holes, astronomers from the University of California, Irvine led by UCI chair and professor of physics & astronomy James Bullock, concluded that there are probably tens of millions of the enigmatic, dark objects in the Milky Way – far more than expected.

  LigoTA

“We think we’ve shown that there are as many as 100 million black holes in our galaxy,” said Bullock, co-author of the research paper in the current issue of Monthly Notices of the Royal Astronomical Society.

UCI’s celestial census began more than a year and a half ago, shortly after the news that the Laser Interferometer Gravitational-Wave Observatory, or LIGO, had detected ripples in the space-time continuum created by the distant collision of two black holes, each the size of 30 suns.

Bullock said that scientists assume most stellar-remnant black holes – which result from the collapse of massive stars at the end of their lives – will be about the same mass as our sun. To see evidence of two black holes of such epic proportions finally coming together in a cataclysmic collision had some astronomers scratching their heads.

UCI’s work was a theoretical investigation into the “weirdness of the LIGO discovery,” Bullock said. The research, led by doctoral candidate Oliver Elbert, was an attempt to interpret the gravitational wave detections through the lens of what is known about galaxy formation and to form a framework for understanding future occurrences.

“Based on what we know about star formation in galaxies of different types, we can infer when and how many black holes formed in each galaxy,” Elbert said. “Big galaxies are home to older stars, and they host older black holes too.”

According to co-author Manoj Kaplinghat, UCI professor of physics & astronomy, the number of black holes of a given mass per galaxy will depend on the size of the galaxy.

The reason is that larger galaxies have many metal-rich stars, and smaller dwarf galaxies are dominated by big stars of low metallicity.

Stars that contain a lot of heavier elements, like our sun, shed a lot of that mass over their lives. When it comes time for one to end it all in a supernova, there isn’t as much matter left to collapse in on itself, resulting in a lower-mass black hole. Big stars with low metal content don’t shed as much of their mass over time, so when one of them dies, almost all of its mass will wind up in the black hole.

“We have a pretty good understanding of the overall population of stars in the universe and their mass distribution as they’re born, so we can tell how many black holes should have formed with 100 solar masses versus 10 solar masses,” Bullock said. “We were able to work out how many big black holes should exist, and it ended up being in the millions – way more than I anticipated.”

In addition, to shed light on subsequent phenomena, the UCI researchers sought to determine how often black holes occur in pairs, how often they merge, and how long it takes. They wondered whether the 30-solar-mass black holes detected by LIGO were born billions of years ago and took a long time to merge or came into being more recently (within the past 100 million years) and merged soon after.

“We show that only 0.1 to 1 percent of the black holes formed have to merge to explain what LIGO saw,” Kaplinghat said. “Of course, the black holes have to get close enough to merge in a reasonable time, which is an open problem.”

Elbert said he expects many more gravitation wave detections so that he and other astronomers can determine if black holes collide mostly in giant galaxies. That, he said, would tell them something important about the physics that drive them to coalesce.

According to Kaplinghat, they may not have to wait too long, relatively speaking of course.

“If the current ideas about stellar evolution are right, then our calculations indicate that mergers of even 50-solar-mass black holes will be detected in a few years,” he said.

Two abnormally massive black holes spin off-kilter to their orbital plane in the artist’s impression at the top of the page of the black-hole merger detected by LIGO. The sizes and spin misalignments of these black holes suggest the pair formed in a surprisingly dynamic fashion that theorists are now struggling to understand.

The Daily Galaxy via University of California, Irvine

Image credit: Top of page, With thanks to Tomoharu Oka (Keio University); LIGO, Caltech, MIT.

Click Here to View Recent Most Popular Space & Science Posts

6a00d8341bf7f753ef01b7c9320a42970b-800wi

Comments

Are most of these ultra dense, mini voids closer to the center of the galaxy, as they sink into the denser concentration of matter, known as the center of the Milkyway?
Hmm, could they be holding the galaxies together?

How much "dark matter" does 100 million black holes imply? Is it enough to explain why galaxies can rotate as fast as they do?

I have read somewhere in the past year that such an explanation has been suggested.

Just curious as to if the picture shown of the two merging black holes is an artistic representation or an actual image of the real thing?

@Hugh, please tell us you're just joking............

Any picture involving black holes is artist illustration. There is no way any real picture of such phenomena can be taken; it's similar to taking picture of your inner thoughts!

Looking far into the future will all matter in the Universe eventually merge into black holes which in turn all eventually merge into one black hole. Is there a point when a black hole can explode? If so, could that be what we would call The Big Bang?

This picture(the first one) is a picture of "fish head nebula" and it has never been called a black hole.
Dave stacey (doowop62@gmail.com)

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)