WATCH NOW --NASA's News Conference on Today's Epic End of the Cassini Mission
New Quantum Gravity Theory of the Big Bang --"We Need Another Picture of the Early Infant Universe"

"Catastrophic" to "Unknown" --New Global Climate-Change Scenarios Not Experienced in Past 20 Million Years

 

0115antarctica01

 

A new study evaluating models of future climate scenarios has led to the creation of the new risk categories "catastrophic" and "unknown" to characterize the range of threats posed by rapid global warming. Researchers propose that unknown risks imply existential threats to the survival of humanity.

These categories describe two low-probability but statistically significant scenarios that could play out by century's end, in a new study by Veerabhadran Ramanathan, a distinguished professor of climate and atmospheric sciences at Scripps Institution of Oceanography at the University of California San Diego, and his former Scripps graduate student Yangyang Xu, now an assistant professor at Texas A&M University.

The risk assessment stems from the objective stated in the 2015 Paris Agreement regarding climate change that society keep average global temperatures "well below" a 2°C (3.6°F) increase from what they were before the Industrial Revolution.

Even if that objective is met, a global temperature increase of 1.5°C (2.7°F) is still categorized as "dangerous," meaning it could create substantial damage to human and natural systems. A temperature increase greater than 3°C (5.4°F) could lead to what the researchers term "catastrophic" effects, and an increase greater than 5°C (9°F) could lead to "unknown" consequences which they describe as beyond catastrophic including potentially existential threats.

The specter of existential threats is raised to reflect the grave risks to human health and species extinction from warming beyond 5° C, which has not been experienced for at least the past 20 million years.

The scientists term warming probability of five percent or less as a "low-probability high-impact" scenario and assess such scenarios in the analysis "Well Below 2°C: Mitigation strategies for avoiding dangerous to catastrophic climate changes," which will appear in the journal Proceedings of the National Academy of Sciences on Sept. 14.

Ramanathan and Xu also describe three strategies for preventing the gravest threats from taking place.
"When we say five percent-probability high-impact event, people may dismiss it as small but it is equivalent to a one-in-20 chance the plane you are about to board will crash," said Ramanathan. "We would never get on that plane with a one-in-20 chance of it coming down but we are willing to send our children and grandchildren on that plane."

The researchers defined the risk categories based on guidelines established by the Intergovernmental Panel on Climate Change (IPCC) and previous independent studies. "Dangerous" global warming includes consequences such as increased risk of extreme weather and climate events ranging from more intense heat waves, hurricanes, and floods, to prolonged droughts.

Planetary warming between 3°C and 5°C could trigger what scientists term "tipping points" such as the collapse of the West Antarctic Ice Sheet and subsequent global sea-level rise, and the dieback of the Amazon rainforest. In human systems, catastrophic climate change is marked by deadly heat waves becoming commonplace, exposing over 7 billion people to heat related mortalities and famine becoming widespread. Furthermore, the changes will be too rapid for most to adapt to, particularly the less affluent, said Ramanathan.

Risk assessments of global temperature rise greater than 5°C have not been undertaken by the IPCC. Ramanathan and Xu named this category "unknown??" with the question marks acknowledging the "subjective nature of our deduction." The existential threats could include species extinctions and major threats to human water and food supplies in addition to the health risks posed by exposing over 7 billion people worldwide to deadly heat.

With these scenarios in mind, the researchers identified what measures can be taken to slow the rate of global warming to avoid the worst consequences, particularly the low-probability high-impact events. Aggressive measures to curtail the use of fossil fuels and emissions of so-called short-lived climate pollutants such as soot, methane and HFCs would need to be accompanied by active efforts to extract CO2 from the air and sequester it before it can be emitted. It would take all three efforts to meet the Paris Agreement goal to which countries agreed at a landmark United Nations climate conference in Nov 2015.

Xu and Ramanathan point out that the goal is attainable. Global CO2 emissions had grown at a rate of 2.9 percent per year between 2000 and 2011, but had slowed to a near-zero growth rate by 2015. They credited drops in CO2 emissions from the United States and China as the primary drivers of the trend. Increases in production of renewable energy, especially wind and solar power, have also bent the curve of emissions trends downward. Other studies have estimated that there was by 2015 enough renewable energy capacity to meet nearly 24 percent of global electricity demand.

Short-lived climate pollutants are so called because even though they warm the planet more efficiently than carbon dioxide, they only remain in the atmosphere for a period of weeks to roughly a decade whereas carbon dioxide molecules remain in the atmosphere for a century or more. The authors also note that most of the technologies needed to drastically curb emissions of short-lived climate pollutants already exist and are in use in much of the developed world. They range from cleaner diesel engines to methane-capture infrastructure.
"While these are encouraging signs, aggressive policies will still be required to achieve carbon neutrality and climate stability," the authors wrote.

The Daily Galaxy via University of California - San Diego

Image at top of page: Chinstrap penguins rest atop a blue iceberg near Antarctica's Candlemas Island

 

Comments

I'm wondering what the risk assessment of another ice age would be? I suppose unknown can't be used since we know what the last 18 have done.
I propose "not wonderful"

Global Warming a failure of Science:
This whole global “Climate Change” has become political. The crusader mentality of climate researchers leads them away from the factual debate and empirical accounting of sound science. We really deserve more from our publicly funded scientific establishments.
The failure is the “lack of transparency” and honesty about how feeble these models are and how much we should stake on their all-too-fallible forecasts (NASA re-adjusting previous temperature data; what under Obama – data manipulation). Thus the same problem continues: climate science has once again botched a prediction that its models were underequipped to make. "Cry 'Havoc!', and let slip the dogs of war" – W. Shakespear; Julius Caesar.
It seems that there can be no moderate and honest discussion of this issue. Skeptics are singled out in creepy enemies lists. Actually, we're now supposed to call them deniers, as though they were disputing the existence of HIV or the holocaust.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)