Last Week's Top 5 Space & Science Headlines --"From Antarctica's 'Lost World' to NASA Nixes Alien Megastructure"
NASA's Cassini Spacecraft's Final Flyby Today of Saturn's Moon Titan --"Could Organic Molecules in Its Vast Lakes Form Cell-Like Structures?" (Today's 'Galaxy' Stream)

First Super-Deep 'Dark-Energy' View of the Structure of the Universe --New CHIME Radio Telescope "Sees in a Radically Different Way" (VIDEO)

 

  DJN3UM7XoAAoKqi

Radio telescope will help the world’s astronomers, physicists and scientists unravel today’s biggest cosmic mysteries. A Canadian effort to build CHIME, Canadian Hydrogen Intensity Mapping Experiment, one of the most innovative radio telescopes in the world will open the universe to a new dimension of scientific study. The final piece of this new radio telescope has been installed, which will act as a time machine allowing scientists to create a three-dimensional map of the universe extending deep into space and time. Seven quadrillion computer operations occur every second on CHIME. This rate is equivalent to every person on Earth performing one million multiplication problems every second.

“CHIME’s unique design will enable us to tackle one of the most puzzling new areas of astrophysics today – Fast Radio Bursts," said Victoria Kaspi, at McGill University."The origin of these bizarre extragalactic events is presently a mystery, with only two dozen reported since their discovery a decade ago. CHIME is likely to detect many of these objects every day, providing a massive treasure trove of data that will put Canada at the forefront of this research.”

 



“CHIME ‘sees’ in a fundamentally different way from other telescopes. A massive supercomputer is used to process incoming radio light and digitally piece together an image of the radio sky. All that computing power also lets us do things that were previously impossible: we can look in many directions at once, run several experiments in parallel, and leverage the power of this new instrument in unprecedented ways.”– Keith Vanderlinde, University of Toronto.

“With the CHIME telescope we will measure the expansion history of the universe and we expect to further our understanding of the mysterious dark energy that drives that expansion ever faster," said Mark Halpern, University of British Columbia. "This is a fundamental part of physics that we don’t understand and it’s a deep mystery. This is about better understanding how the universe began and what lies ahead.”

CHIME's “half-pipe” telescope design and advanced computing power will help scientists better understand the three frontiers of modern astronomy: the history of the universe, the nature of distant stars and the detection of gravitational waves. By measuring the composition of dark energy, scientists will better understand the shape, structure and fate of the universe. In addition, CHIME will be a key instrument to study gravitational waves, the ripples in space-time that were only recently discovered, confirming the final piece of Einstein’s theory of general relativity.

CHIME is a collaboration among 50 Canadian scientists from the University of British Columbia, the University of Toronto, McGill University, and the National Research Council of Canada (NRC). The $16-million investment for CHIME was provided by the Canada Foundation for Innovation and the governments of British Columbia, Ontario, and Quebec, with additional funding from the Natural Sciences and Engineering Research Council and the Canadian Institute for Advanced Research. The telescope is located in the mountains of British Columbia’s Okanagan Valley at the NRC’s Dominion Radio Astrophysical Observatory near Penticton.

The CHIME telescope incorporates four 100-metre long U-shaped cylinders of metal mesh that resemble snowboard half-pipes. Its overall footprint is the size of five NHL hockey rinks. CHIME collects radio waves with wavelengths between 37 and 75 centimetres, similar to the wavelength used by cell phones.

Most of the signals collected by CHIME come from our Milky Way galaxy, but a tiny fraction of these signals started on their way when the universe was between 6 and 11 billion years old.

The radio signal from the universe is very weak and extreme sensitivity is needed to detect it. The amount of energy collected by CHIME in one year is equivalent to the amount of energy gained by a paper clip falling off a desk to the floor.

The data rate passing through CHIME is comparable to all the data in the world’s mobile networks. There is so much data that it cannot all be saved to disk. It must first be processed and compressed by a factor of 100,000.

The Daily Galaxy via McGill University

Comments

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)