Weekend 'Galaxy' Insight: Time --"The Hidden Connection to Existence"
Kepler Spacecraft Finding: "Our Solar System Appears to Be Unusual"

Quantum Phenomenon That Existed in the Early Universe --"Evidence Observed"

 

 

93146_web

 

 

Scientists see ripples of a particle-separating wave in primordial plasma, a key sign of quark-gluon plasma and evidence for a long-debated quantum phenomenon that's called a "chiral magnetic wave" rippling through the soup of quark-gluon plasma created in energetic particle smashups.

Scientists in the STAR collaboration at the Relativistic Heavy Ion Collider, a particle accelerator shown above exploring nuclear physics and the building blocks of matter at the U.S. Department of Energy's Brookhaven National Laboratory, have new evidence the magnetic wave.

The presence of this wave is one of the consequences scientists were expecting to observe in the quark-gluon plasma--a state of matter that existed in the early universe when quarks and gluons, the building blocks of protons and neutrons, were free before becoming inextricably bound within those larger particles.

Studying the phase transitions of quark-gluon plasma shown in the image below allows us to understand the behavior of matter in the early universe, just fractions of a second after the Big Bang, as well as conditions that might exist inside neutron stars. The fact that these two disparate phenomena are related demonstrates just how deeply the cosmic and quantum worlds are intertwined. 

 

            QGP_graphic

 

The tentative discovery, if confirmed, would provide additional evidence that RHIC's collisions of energetic gold ions recreate nucleus-size blobs of the fiery plasma thousands of times each second. It would also provide circumstantial evidence in support of a separate, long-debated quantum phenomenon required for the wave's existence. The findings are described in a paper that will be highlighted as an Editors' Suggestion in Physical Review Letters.

To try to understand these results, let's take a look deep within the plasma to a seemingly surreal world where magnetic fields separate left- and right-"handed" particles, setting up waves that have differing effects on how negatively and positively charged particles flow.

"What we measure in our detector is the tendency of negatively charged particles to come out of the collisions around the 'equator' of the fireball, while positively charged particles are pushed to the poles," said STAR collaborator Hongwei Ke, a postdoctoral fellow at Brookhaven. But the reasons for this differential flow, he explained, begin when the gold ions collide.

The ions are gold atoms stripped of their electrons, leaving 79 positively charged protons in a naked nucleus. When these ions smash into one another even slightly off center, the whole mix of charged matter starts to swirl. That swirling positive charge sets up a powerful magnetic field perpendicular to the circulating mass of matter, Ke explained. Picture a spinning sphere with north and south poles.

Within that swirling mass, there are huge numbers of subatomic particles, including quarks and gluons at the early stage, and other particles at a later stage, created by the energy deposited in the collision zone. Many of those particles also spin as they move through the magnetic field. The direction of their spin relative to their direction of motion is a property called chirality, or handedness; a particle moving away from you spinning clockwise would be right-handed, while one spinning counterclockwise would be left-handed.

According to Gang Wang, a STAR collaborator from the University of California at Los Angeles, if the numbers of particles and antiparticles are different, the magnetic field will affect these left- and right-handed particles differently, causing them to separate along the axis of the magnetic field according to their "chiral charge."

"This 'chiral separation' acts like a seed that, in turn, causes particles with different charges to separate," Gang said. "That triggers even more chiral separation, and more charge separation, and so on--with the two effects building on one another like a wave, hence the name 'chiral magnetic wave.' In the end, what you see is that these two effects together will push more negative particles into the equator and the positive particles to the poles."

To look for this effect, the STAR scientists measured the collective motion of certain positively and negatively charged particles produced in RHIC collisions. They found that the collective elliptic flow of the negatively charged particles--their tendency to flow out along the equator--was enhanced, while the elliptic flow of the positive particles was suppressed, resulting in a higher abundance of positive particles at the poles. Importantly, the difference in elliptic flow between positive and negative particles increased with the net charge density produced in RHIC collisions.

According to the STAR publication, this is exactly what is expected from calculations using the theory predicting the existence of the chiral magnetic wave. The authors note that the results hold out for all energies at which a quark-gluon plasma is believed to be created at RHIC, and that, so far, no other model can explain them.

The finding, says Aihong Tang, a STAR physicist from Brookhaven Lab, has a few important implications.

"First, seeing evidence for the chiral magnetic wave means the elements required to create the wave must also exist in the quark-gluon plasma. One of these is the chiral magnetic effect--the quantum physics phenomenon that causes the electric charge separation along the axis of the magnetic field--which has been a hotly debated topic in physics. Evidence of the wave is evidence that the chiral magnetic effect also exists." Tang said.

The chiral magnetic effect is also related to another intriguing observation at RHIC of more-localized charge separation within the quark-gluon plasma. So this new evidence of the wave provides circumstantial support for those earlier findings.

Finally, Tang pointed out that the process resulting in propagation of the chiral magnetic wave requires that "chiral symmetry"--the independent identities of left- and right-handed particles--be "restored."

"In the 'ground state' of quantum chromodynamics (QCD)--the theory that describes the fundamental interactions of quarks and gluons--chiral symmetry is broken, and left- and right-handed particles can transform into one another. So the chiral charge would be eliminated and you wouldn't see the propagation of the chiral magnetic wave," said nuclear theorist Dmitri Kharzeev, a physicist at Brookhaven and Stony Brook University. But QCD predicts that when quarks and gluons are deconfined, or set free from protons and neutrons as in a quark-gluon plasma, chiral symmetry is restored. So the observation of the chiral wave provides evidence for chiral symmetry restoration--a key signature that quark-gluon plasma has been created.

"How does deconfinement restore the symmetry? This is one of the main things we want to solve," Kharzeev said. "We know from the numerical studies of QCD that deconfinement and restoration happen together, which suggests there is some deep relationship. We really want to understand that connection."

"To improve our ability to search for and understand the chiral effects, we'd like to compare collisions of nuclei that have the same mass number but different numbers of protons--and therefore, different amounts of positive charge (for example, Ruthenium, mass number 96 with 44 protons, and Zirconium, mass number 96 with 40 protons), added
Brookhaven physicist Zhangbu Xu, spokesperson for the STAR collaboration. "That would allow us to vary the strength of the initial magnetic field while keeping all other conditions essentially the same."

Brookhaven National Laboratory

Comments


Could you please explain why is necessary that numbers of particles and antiparticles to be different

"if the numbers of particles and antiparticles are different, the magnetic field will affect these left- and right-handed particles differently, causing them to separate along the axis of the magnetic field according to their "chiral charge.""

Thank you

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)