Today's 'Galaxy' Insight --"Life in the Milky Way"
Friday's 'Galaxy' Insight --"Why the Universe Exists"

Spectacular Galaxy With a 2,400 Light-Year Ring of Star Clusters -- Observed Devouring a Dwarf Neighbor



Ngc1512 (1)


A team of Australian and Spanish astronomers have caught greedy galaxy NGC 1512, a spectacular barred spiral galaxy, gobbling on its neighbors and leaving crumbs of evidence about its dietary past. Galaxies grow by churning loose gas from their surroundings into new stars, or by swallowing neighbouring galaxies whole. However, they normally leave very few traces of their cannibalistic habits.

Australian Astronomical Observatory (AAO) and Macquarie University astrophysicist, Ángel R. López-Sánchez, and his collaborators have been studying the galaxy NGC 1512 to see if its chemical story matches its physical appearance.

The team of researchers used the unique capabilities of the 3.9-metre Anglo-Australian Telescope (AAT), near Coonabarabran, New South Wales, to measure the level of chemical enrichment in the gas across the entire face of NGC 1512.

Chemical enrichment occurs when stars churn the hydrogen and helium from the Big Bang into heavier elements through nuclear reactions at their cores. These new elements are released back into space when the stars die, enriching the surrounding gas with chemicals like oxygen, which the team measured.

"We were expecting to find fresh gas or gas enriched at the same level as that of the galaxy being consumed, but were surprised to find the gases were actually the remnants of galaxies swallowed earlier," Dr López-Sánchez said.

"The diffuse gas in the outer regions of NGC 1512 is not the pristine gas created in the Big Bang but is gas that has already been processed by previous generations of stars." The stunning 2,400 light-year-wide ring of infant star clusters surrounding the core of NGC 1512 are quite common in the Universe. In barred spiral galaxies they may comprise the most numerous class of nearby starburst regions. The giant bar, which is too faint to be seen in this image, funnels the gas to the inner ring, where massive stars are formed within numerous star clusters.




CSIRO's Australia Telescope Compact Array, a powerful 6-km diameter radio interferometer located in eastern Australia, was used to detect large amounts of cold hydrogen gas that extends way beyond the stellar disk of the spiral galaxy NGC 1512.

"The dense pockets of hydrogen gas in the outer disk of NGC 1512 accurately pin-point regions of active star formation", said CSIRO's Dr Baerbel Koribalski, a member of the research collaboration.

When this finding was examined in combination with radio and ultraviolet observations the scientists concluded that the rich gas being processed into new stars did not come from the inner regions of the galaxy either. Instead, the gas was likely absorbed by the galaxy over its lifetime as NGC 1512 accreted other, smaller galaxies around it.

Dr Tobias Westmeier, from the International Centre for Radio Astronomy Research in Perth, said that while galaxy cannibalism has been known for many years, this is the first time that it has been observed in such fine detail.

"By using observations from both ground and space based telescopes we were able to piece together a detailed history for this galaxy and better understand how interactions and mergers with other galaxies have affected its evolution and the rate at which it formed stars," he said.

The team's successful and novel approach to investigating how galaxies grow is being used in a new program to further refine the best models of galaxy evolution.

For this work the astronomers used spectroscopic data from the AAT at Siding Spring Observatory in Australia to measure the chemical distribution around the galaxies. They identified the diffuse gas around the dual galaxy system using Australian Telescope Compact Array (ATCA) radio observations. In addition, they identified regions of new star formation with data from the Galaxy Evolution Explorer (GALEX) orbiting space telescope.

"The unique combination of these data provide a very powerful tool to disentangle the nature and evolution of galaxies," said Dr López-Sánchez. "We will observe several more galaxies using the same proven techniques to improve our understanding of the past behaviour of galaxies in the local Universe."

The Daily Galaxy via International Center for Radio Astronomy Research

Image credit: Top of Page, Hubble Space Telescope


2400 light years really isn't that big in the scheme of things.
Maybe it should be 24,000 ly.? Just sayin'

The telescope images of distant galaxies are really questionable. They are likely to be severely distorted /

Therefore, the conclusion may well be incorrect.

The said distortion /inaccuracy is due to the image itself, not
the telescope.

I think a credible image should be able to clearly distinguish
between individual star and its planets or objects within the
scope of this credible range.

Mostly I was referring to the scale in the top right corner.
Is it 45,000ly from arrow point to arrow point or "5'"
what ever 5' means. 5 feet...inches...degrees.

If it's the length of that line then 2,400lly would be the
size of one of the red boxes in the center.

Do you agree?

"If it's the length of that line then 2,400lly would be the
size of one of the red boxes in the center".

My estimation is about 3,000ly to 3,800ly.

Universe image distortion is my concern.

In order to support the conclusions of this article, I prefer
satellite pictures taken at close range.

According to the image of the article, I think this is an old galaxy surrounded by younger stars. This galaxy may be more stable than our Milky Way.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)