Milky Way's "Methuselah" --The Oldest Known Star of Our Galaxy
Follow the Daily Galaxy
Add Daily Galaxy to igoogle page AddThis Feed Button Join The Daily Galaxy Group on Facebook Follow The Daily Galaxy Group on twitter
 

« "Extreme Space" --The Most Remote Portion of an Elliptical Galaxy Ever Explored | Main | Image of the Day: Black Hole "Mine Field" Lights Up a Spectacular Galaxy »

July 22, 2014

Milky Way's "Methuselah" --The Oldest Known Star of Our Galaxy

 

Oldest-star-in-universe

 

The stars of the first generation were formed out of a primordial gas which consisted only of hydrogen and helium. Their mass ranged from ten to five hundred times the mass of our Sun. Nuclear processes in the interior of these stars created heavy elements like iron, silicon, carbon, and oxygen. When the stars died during the first supernova explosions, the heavy elements were ejected and formed the stars of the second generation. There's no iron in this 13.6 billion-year-old fireball.

Scientists from the Universities of Göttingen and Copenhagen have modelled the formation of the oldest known star in the Milky Way shown above using high-resolution computer simulations. Using the star’s abundance patterns, the scientists performed cosmological simulations on a supercomputer of the North-German Supercomputing Alliance which included the dynamics of gas and dark matter as well as the chemical evolution.

From this simulation, the scientists expect to obtain an improved understanding of the transition from the first to the second generation of stars in the Universe. The results of their study were published in the Astrophysical Journal Letters.

The star, while given an age of 13.6-plus billion years, is just 6,000 light years distant. What's special about SMSS (SkyMapper Southern Survey) J031300.36−670839.3 is its chemical composition, as revealed in its spectrum lines. These show that the star has very little iron – at a maximum of 10-7.1 the concentration in our Sun, it's the most iron-poor star ever characterised. The Spectrum image below posted to Twitter by Anna Frebel, MIT. The blue means little iron present.

             Keller_spectrograph

 

“Our simulations indicate that the gas efficiently cools during the process,” explains the leader of the study, Dr. Stefano Bovino from Göttingen University’s Institute for Astrophysics. “Such conditions favor the formation of low-mass stars.” The presence of heavy elements provides additional mechanisms for the gas to cool. It is therefore very important for the scientists to follow and model their chemical evolution.

The scientists chose the oldest known star of the Milky Way, called SMSS J031300.-36-670839.3 and estimated to be roughly 13.6 billion years old, because its abundance patterns were previously shown to be consistent with one single low-energy supernova. “It seems very likely that this star is indeed one of the very first stars that formed out of the metal-enriched gas,” says Göttingen University’s Prof. Dr. Dominik Schleicher. “The chemical conditions reflect those right after the first supernova explosion.”

While SMSS J031300.-36-670839.3 has only a tiny amount of heavy elements, it has a relatively higher carbon abundance. It in fact represents an entire class with similar properties, and the scientists expect a very similar formation pathway for the entire class. The new simulations became feasible through the development of the chemistry package KROME, a joint effort led by the University of Copenhagen. In the future, the scientists plan to explore a wide range of possible conditions to understand the formation of the most metal-poor stars observed in the Milky Way. 

Original publication: Stefano Bovino et al. Formation of carbon-enhanced metal-poor stars in the presence of far ultraviolet radiation. 2014 ApJ 790 L35. Doi: 10.1088/2041-8205/790/2/L35.

The Daily Galaxy via University of Göttingen 

Image credit: http://img.australiangeographic.com.au/images/oldest-star-in-universe.jpg

Comments

Bull = does not compute ! If the theory of 1, 2 etc. generation & "metal" richness holds , that star should no exist any more..... zo.... there is something putrid about the "theory"...


Post a comment

« "Extreme Space" --The Most Remote Portion of an Elliptical Galaxy Ever Explored | Main | Image of the Day: Black Hole "Mine Field" Lights Up a Spectacular Galaxy »




1


2


3


4


5


6


7


8





9


11


12


13


14


15

Our Partners

technology partners

A


19


B

About Us/Privacy Policy

For more information on The Daily Galaxy and to contact us please visit this page.



E