"Blue Skies and Global Oceans?" --NASA Mission Launched to Uncover Mars' Evolution the Past 3 Billion Years
Discoverer of Pulsars --First Thought to be Signals from Extraterrestrial Civilization, Named Head of Royal Society

Hubble's Giant Successor Ready for Assembly --A 'Cosmic TiVo' that Will Exponentially Deepen Our Knowledge of the Universe




With the arrival of the last three of the 18 flight primary mirror segments at NASA's Goddard Space Flight Center in Greenbelt, Md., all the pieces of the most powerful space telescope ever are ready for assembly. After traveling across the country, the mirrors were prepped to enter a Goddard clean room for inspections. The $8.8 billion James Webb Space Telescope is scheduled for launch in 2018 and aims to provide an unprecedented look at far-away planets and the first galaxies.

The telescope will scan the cosmos in the infrared, capturing light of the most distant stars and galaxies beginning 13.5 billion years ago that is stored on board until it can be downloaded to the ground stations of NASA's "deep space network" in a four-hour window once every 12 hours - and in 60 gigabyte bursts fired straight out of the recorder.




A successor to the Hubble Space Telescope launched in 1990, it is a joint project of NASA, the European Space Agency and the Canadian Space Agency. The JWST's 6.5-metre primary mirror, nearly three times the diameter of Hubble's, will be the largest ever launched into space. The telescope will rely on a host of untried technologies, ranging from its sensitive light-detecting instrumentation to the cooling system that will keep the huge spacecraft below 50 kelvin. And it will have to operate perfectly on the first try, some 1.5 million kilometres from Earth — four times farther than the Moon and beyond the reach of any repair mission. If the JWST — named after the administrator who guided NASA through the development of the Apollo missions — fails, the progress of astronomy could be set back by a generation.

“The recent completion of the critical design review for Webb, and the delivery of all its instruments to Goddard, mark significant progress for this mission,” NASA administrator Charles Bolden said. “It’s very exciting to see it all coming together on schedule.”

Imagine a place colder than Pluto where rubber behaves like glass and where most gasses are liquid. The place is called a Lagrange point where the infrared JWT will orbit following its scheduled launch.

NASA engineers have created a unique engineering marvel called the ISIM structure that survived exposure to extreme cryogenic temperatures, proving that the structure will remain stable when exposed to the harsh environment of space.

The ISIM, or the Integrated Science Instrument Module Flight Structure, will serve as the structural "heart" of the James Webb Space Telescope. The ISIM is a large bonded composite assembly made of a light weight material that has never been used before to support high precision optics at the extreme cold temperatures of the Webb observatory.

At the Lagrange Point, the Webb telescope can observe the whole sky while always remaining in the shadow of its tennis-court-sized sunshield. Webb's components need to survive temperatures that plunge as low as 27 Kelvin (-411 degrees Fahrenheit), and it is in this environment that the ISIM structure met its design requirements during recent testing.

"It is the first large, bonded composite space flight structure to be exposed to such a severe environment," said Jim Pontius, ISIM lead mechanical engineer at NASA's Goddard Space Flight Center.

When fully integrated, the roughly 2.2-meter (more than 7 feet) ISIM will weigh more than 900 kg (nearly 2000 lbs) and must survive more than six and a half times the force of gravity. The ISIM structure holds all of the instruments needed to perform science with the telescope in very tight alignment. Engineers at NASA Goddard had to create the structure without any previous guidelines. They designed this one-of-a-kind structure made of new composite materials and adhesive bonding technique that they developed after years of research.

"We engineered from small pieces to the big pieces testing all along the way to see if the failure theories were correct. We were looking to see where the design could go wrong," Pontius explained. "By incorporating all of our lessons learned into the final flight structure, we met the requirements, and test validated our building-block approach."

The Mechanical Systems Division at NASA Goddard performed the 26-day test to specifically test whether the car-sized structure behaved as predicted as it cooled from room temperature to the frigid — very important since the science instruments must maintain a specific location on the structure to receive light gathered by the telescope's 6.5-meter (21.3-feet) primary mirror. If the contraction and distortion of the structure due to the cold could not be accurately predicted, then the instruments would no longer be in position to gather data about everything from the first luminous glows following the big bang to the formation of star systems capable of supporting life.

The same testing facility will be used to test other Webb telescope systems, including the telescope backplane, the structure to which the Webb telescope's 18 primary mirror segments will be bolted when the observatory is assembled.

The Daily Galaxy via NASA and nature.com


Bloody marvelous machine....

Please Lord don't take me until it's been working for a few years....

My hope is that for 8 billion dollars we have a fleet of robotic repairmen standing by on the launch pad to repair it "when" something breaks.Let's face it, we've gotten more science out of the Hubble "after" a shuttle launch enabled astronauts to repair it. I'd hate to think, in a post shuttle world, that if the Webb blows a fuse in the first week there is no way to repair it. 8 billion dollars is a huge investment in an unrepairable device of any sort. I'm still upset that NASA didn't design a way to repreplace the cryogenic fuel in the Kepler Space Telescope. If the original spacecraft cost 600 million dollars, how much more would it have cost to design a docking/cryo refuel assembley to improve on the initial investment by sustaining and extending the life of the telescope? ATC, this does not bode well for future ambitious but costly space missions should the Webb go dark early.

As far as I know its orbit around the sun is 4 times the distance away from earth than the moon is. So its 1.5mil km away, with no way to repair it even if we had a shuttle.

By 2018 we should have the space vehicle Orion up and running,
and if not that then we might have the new Spacex dragon,
or maybe a Virgin Galactic module of some kind, to send out a repair team. There are possibilities. The Orion is a much more versatile vehicle than the shuttle ever was, and more economical
as well.

@ Tertius

Even at that distance an initial "modular" design with replacable, robotic repair accessable modular systems is a better alternative than losing an 8 "BILLION" dollar investment, in the first week of operation because of a blown (snark) fuse.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)