Quasars' Awesome Power Found to Extend to Outer Limits of Galaxies
Follow the Daily Galaxy
Add Daily Galaxy to igoogle page AddThis Feed Button Join The Daily Galaxy Group on Facebook Follow The Daily Galaxy Group on twitter

« The Survivors! New Theories About the Chicxulub Asteroid Impact 65 Million Years Ago | Main | "An Inter-Planetary Shuttle?" --Mars' Meteorites Cloak a Chemical Signature Almost as Old as the Solar System »

July 25, 2013

Quasars' Awesome Power Found to Extend to Outer Limits of Galaxies




Quasars are among the brightest, oldest, most distant, and most powerful objects in the universe. Powered by massive black holes at the center of most known galaxies, quasars can emit enormous amounts of energy, up to a thousand times the total output of the hundreds of billions of stars in our entire Milky Way. Dartmouth astrophysicists Ryan Hickox and Kevin Hainline and colleagues have a paper scheduled for publication in The Astrophysical Journal, detailing discoveries based upon observations of 10 quasars in which they document the immense power of quasar radiation, which reaches out for many thousands of light years to the limits of the quasar's galaxy.

"For the first time, we are able to see the actual extent to which these quasars and their black holes can affect their galaxies, and we see that it is limited only by the amount of gas in the galaxy," says Hainline, a Dartmouth postdoctoral research associate. "The radiation excites gas all the way to the margins of the galaxy and stops only when it runs out of gas."

The radiation released by a quasar covers the entire electromagnetic spectrum, from radio waves and microwaves at the low-frequency end through infrared, ultraviolet, and X-rays, to high-frequency gamma rays. A central black hole, also called an active galactic nucleus, may grow by swallowing material from the surrounding interstellar gas, releasing energy in the process. This leads to the creation of a quasar, emitting radiation that illuminates the gas present throughout the galaxy. 

The image below shows galaxy NGC 7319 The small object indicated by the arrow is a quasar. 


            NGC7319quasarLabeled (1)

"If you take this powerful, bright radiation source in the center of the galaxy and blast the gas with its radiation, it will get excited in just the same way the neon gets excited in neon lamps, producing light," says Hickox, an assistant professor in the Department of Physics and Astronomy at Dartmouth. "The gas will produce very specific frequencies of light that only a quasar can produce. This light functioned as a tracer that we were able to use to follow the gas excited by the black hole out to large distances."

Quasars are small compared to a galaxy, like a grain of sand on a beach, but the power of their radiation can extend to the galactic boundaries and beyond.

The illumination of gas can have a profound effect, since gas that is lit up and heated by the quasar is less able to collapse under its own gravity and form new stars. Thus, the tiny central black hole and its quasar can slow down star formation in the entire galaxy and influence how the galaxy grows and changes over time.

"This is exciting because we know from a number of different independent arguments that these quasars have a profound effect on the galaxies in which they live," Hickox says. "There is a lot of controversy about how they actually influence the galaxy, but now we have one aspect of the interaction that can extend on the scale of the entire galaxy. Nobody had seen this before."

Hickox, Hainline, and their co-authors based their conclusions on observations made with the Southern African Large Telescope (SALT), the largest optical telescope in the southern hemisphere. Dartmouth is a partner in SALT, giving faculty and students access to the instrument. The observations were performed using spectroscopy, in which light is broken down into its component wavelengths. "For this particular kind of experiment, it is among the best telescopes in the world," says Hickox.

They also used data from NASA's Wide-field Infrared Survey Explorer (WISE) -- a space telescope that imaged the whole sky in the infrared. The scientists used observations in infrared light because they give a particularly reliable measure of the total energy output by the quasar.

The Daily Galaxy via Dartmouth College and Joseph Blumberg

Image credits: http://electric-cosmos.org/arp.htm and http://wall.alphacoders.com/big.php?i=76566


Does the outward galactic radiation pressure from quasars suggest there might be an extremely large quasar that is accelerating our observable universe but is ‘hidden’ by interstellar dust? Is this hidden body the source of dark energy?

I didn't understand this because the link of black holes to quasars was new to me so I wiki'd it for a bit more info and found this: ULAS J1120+0641, with a redshift of 7.085, which corresponds to a proper distance of approximately 29 billion light-years from Earth (see more discussion of how cosmological distances can be greater than the light-travel time at Metric Expansion of Space).

Now I'm thoroughly confused because I don't understand how if the Universe is estimated to be 13 billion years old can something be 29 billion light years from earth.

@resonaz No, this is not possible. The radiation feedback could possibly regulate the evolution of a galaxy. @Simon Redshift of 7 is appr. 13 billion light years, shortly after the universe was created and redshift accounts for universe expansion as well.

Thank you d. I think this is all just beyond me and the sizes, distances and time just to great to comprehend.

Something can be 29 billion light years from earth because we are moving away from each other in opposite(ish) directions at a relative speed nearing the speed of light.

Post a comment

« The Survivors! New Theories About the Chicxulub Asteroid Impact 65 Million Years Ago | Main | "An Inter-Planetary Shuttle?" --Mars' Meteorites Cloak a Chemical Signature Almost as Old as the Solar System »















Our Partners

technology partners




About Us/Privacy Policy

For more information on The Daily Galaxy and to contact us please visit this page.