Image of the Day: "Star Trek Lands on Pluto's Moons"
New Space-Observatory Technology Reveals a Spectacular HD Universe

Black Holes Brighter than Their Galaxies Powered Early Universe


                      Quasar3C273Hubble (1)


The research team at the Dark Cosmology Centre at the Niels Bohr Institute has studied a galaxy located approx. 11 billion years back in time in great detail. Behind the galaxy is a quasar, which is an active black hole that is brighter than a galaxy. Using the light from the quasar, they found the galaxy using the giant telescopes, VLT in Chile. The large amount of gas in the young galaxy simply absorbed a massive amount of the light from the quasar lying behind it. Here they could 'see' (i.e. via absorption) the outer parts of the galaxy. Furthermore, active star formation causes some of the gas to light up, so it could be observed directly.

 "We want to understand this cosmic evolutionary history better by studying very early galaxies. We want to measure how large they are, what they weigh and how quickly stars and heavy elements are formed," explains Johan Fynbo, who has lead the research together with Jens-Kristian Krogager, at the Dark Cosmology Centre at the Niels Bohr Institute.

With the Hubble Space Telescope they could also see the recently formed stars in the galaxy and they could calculate how many stars there were in relation to the total mass, which is comprised of both stars and gas. They could now see that the relative proportion of heavier elements is the same in the centre of the galaxy as in the outer parts and it shows that the stars that are formed earlier in the centre of the galaxy enrich the stars in the outer parts with heavier elements.

"By combining the observations from both methods – absorption and emission – we have discovered that the stars have an oxygen content equivalent to approx. 1/3 of the Sun's oxygen content. This means that earlier generations of stars in the galaxy had already built up elements that made it possible to form planets like Earth 11 billion years ago," conclude Johan Fynbo and Jens-Kristian Krogager.

The iamge at the top of the page shwos a quasar, which are among the brightest objects in the universe and can be used as lighthouses to study the universe between the quasars and Earth. Here researchers have discovered a galaxy that lies in front of a quasar and by studying the absorption lines in the light from the quasar, they have measured the elemental composition in the galaxy in great detail, despite the fact that we are looking approx. 11 billion years back in time.

The url to the research paper:

The Daily Galaxy via Niels Bohr Institute

Image Credit: Chano Birkelind, Niels Bohr Institute


Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)