Discovery of Mercury's Water Ice Points to Complex Organics
Follow the Daily Galaxy
Add Daily Galaxy to igoogle page AddThis Feed Button Join The Daily Galaxy Group on Facebook Follow The Daily Galaxy Group on twitter
 

« Image of the Day: Spectacular Jets of a Supermassive Black Hole Dwarf their Galaxy | Main | Colossal Black Hole Equal to 17 Billion Suns Discovered --May Overturn Existing Models »

November 30, 2012

Discovery of Mercury's Water Ice Points to Complex Organics

 

 

 

           708627main_PressConf20121126_full_34x3_946-710 (1)

 

New observations by the MESSENGER spacecraft provide compelling support for the long-held hypothesis that Mercury harbors abundant water ice and other frozen volatile materials in its permanently shadowed polar craters. The new observations have also raised new questions: Do the dark materials in the polar deposits consist mostly of organic compounds? What kind of chemical reactions has that material experienced? Are there any regions on or within Mercury that might have both liquid water and organic compounds? Shown in the image above in red are areas of Mercury’s north polar region that are in shadow.

“We thought the most exciting finding could be that this really was water ice,” says Maria Zuber, the E.A. Griswold Professor of Geophysics in MIT’s Department of Earth, Atmospheric and Planetary Sciences, and a member of the research team. “But the identification of darker, insulating material that may indicate complex organics makes the story even more thrilling.”

Paul Lucey, a professor of geophysics and planetology at the University of Hawaii, points out that MESSENGER has also revealed a number of regions where surfaces were much darker than in previous radar measurements. Lucey interprets these results as possible evidence of receding ice on Mercury’s surface. “This suggests that in the past, ice was more extensive on Mercury, and retreated to its current state,” says Lucey, who was not involved in the research. “Even Mercury experiences global warming.”

Three independent lines of evidence support this conclusion: the first measurements of excess hydrogen at Mercury's north pole with MESSENGER's Neutron Spectrometer, the first measurements of the reflectance of Mercury's polar deposits at near-infrared wavelengths with the Mercury Laser Altimeter (MLA), and the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA.  

Given its proximity to the Sun, Mercury would seem to be an unlikely place to find ice. But the tilt of Mercury's rotational axis is almost zero — less than one degree — so there are pockets at the planet's poles that never see sunlight. Scientists suggested decades ago that there might be water ice and other frozen volatiles trapped at Mercury's poles.

The idea received a boost in 1991, when the Arecibo radio telescope in Puerto Rico detected unusually radar-bright patches at Mercury's poles, spots that reflected radio waves in the way one would expect if there were water ice. Many of these patches corresponded to the location of large impact craters mapped by the Mariner 10 spacecraft in the 1970s. But because Mariner saw less than 50 percent of the planet, planetary scientists lacked a complete diagram of the poles to compare with the images.

MESSENGER's arrival at Mercury last year changed that. Images from the spacecraft's Mercury Dual Imaging System taken in 2011 and earlier this year confirmed that radar-bright features at Mercury's north and south poles are within shadowed regions on Mercury's surface, findings that are consistent with the water-ice hypothesis.

Now the newest data from MESSENGER strongly indicate that water ice is the major constituent of Mercury's north polar deposits, that ice is exposed at the surface in the coldest of those deposits, but that the ice is buried beneath an unusually dark material across most of the deposits, areas where temperatures are a bit too warm for ice to be stable at the surface itself.

MESSENGER uses neutron spectroscopy to measure average hydrogen concentrations within Mercury's radar-bright regions. Water-ice concentrations are derived from the hydrogen measurements.

"The neutron data indicate that Mercury's radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 20 centimeters thick that is less rich in hydrogen," writes David Lawrence, a MESSENGER Participating Scientist based at The Johns Hopkins University Applied Physics Laboratory and the lead author of one of the papers. "The buried layer has a hydrogen content consistent with nearly pure water ice."

Data from MESSENGER's Mercury Laser Altimeter (MLA) — which has fired more than 10 million laser pulses at Mercury to make detailed maps of the planet's topography — corroborate the radar results and Neutron Spectrometer measurements of Mercury's polar region, writes Gregory Neumann of the NASA Goddard Space Flight Center. In a second paper, Neumann and his colleagues report that the first MLA measurements of the shadowed north polar regions reveal irregular dark and bright deposits at near-infrared wavelength near Mercury's north pole.

"These reflectance anomalies are concentrated on poleward-facing slopes and are spatially collocated with areas of high radar backscatter postulated to be the result of near-surface water ice," Neumann writes. "Correlation of observed reflectance with modeled temperatures indicates that the optically bright regions are consistent with surface water ice."

The MLA also recorded dark patches with diminished reflectance, consistent with the theory that the ice in those areas is covered by a thermally insulating layer. Neumann suggests that impacts of comets or volatile-rich asteroids could have provided both the dark and bright deposits, a finding corroborated in a third paper led by David Paige of the University of California, Los Angeles.

Paige and his colleagues provided the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA. The measurements "show that the spatial distribution of regions of high radar backscatter is well matched by the predicted distribution of thermally stable water ice," he writes.

According to Paige, the dark material is likely a mix of complex organic compounds delivered to Mercury by the impacts of comets and volatile-rich asteroids, the same objects that likely delivered water to the innermost planet.The organic material may have been darkened further by exposure to the harsh radiation at Mercury's surface, even in permanently shadowed areas.

This dark insulating material is a new wrinkle to the story, says Sean Solomon of the Columbia University's Lamont-Doherty Earth Observatory, principal investigator of the MESSENGER mission. "For more than 20 years the jury has been deliberating on whether the planet closest to the Sun hosts abundant water ice in its permanently shadowed polar regions. MESSENGER has now supplied a unanimous affirmative verdict."

The Daily Galaxy via http://www.nasa.gov/mission_pages/messenger/main/index.html

Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory

Comments

Amusing how quickly the miscreants have adopted pompous titles, hear thee "professor of palaeontology" no less :-)

p.s. what does one know, and claim to teach about planets? We hardly know anything, embarrassing !

Star Water
Electric Universe

A little research goes a long way to finding out how off the mark mainstream accepted/fabricated science is.
Good day all.

What next? Life on Mercury?

It seems like every other day we are learning about complex organics on another body in our solar system. Mars, the moons of Jupiter and Saturn. I think if we find even microbial life on any one of these places it must change the model for exploring for life elsewhere. We live in amazing times, its a very exciting time to be a stargazer.

Shown in the image above in red are areas of Mercury’s north polar region that are in shadow.


Post a comment

« Image of the Day: Spectacular Jets of a Supermassive Black Hole Dwarf their Galaxy | Main | Colossal Black Hole Equal to 17 Billion Suns Discovered --May Overturn Existing Models »




1


2


3


4


5


6


7


8





9


11


12


13


14


15

Our Partners

technology partners

A


19


B

About Us/Privacy Policy

For more information on The Daily Galaxy and to contact us please visit this page.



E