The 'Dark Genome' -- Was It a Key to the Survival of the Human Species? (Today's Most Popular)
"Eight-Billion-Year-Old Light May Solve the Mystery of Dark Energy"

Gravitational Waves from Dying Black Holes Reveal the Secret of Their Birth



Black holes are regions of space where gravity is so strong that not even light can escape and so isolated black holes are truly dark objects and don't emit any form of radiation. However, black holes that get deformed, because of other black holes or stars crashing into them, are known to emit a new sort of radiation, called gravitational waves, ripples in the fabric of spacetime that travel at the speed of light but they are extremely difficult to detect, which Einstein predicted nearly a hundred years ago.

Kilometer-sized laser interferometers are being built in the US, Europe, Japan and India, to detect these waves from colliding black holes and other cosmic events. They are sensitive to gravitational waves in roughly the same frequency range as audible sound waves, and can be thought of as a microphone to gravitational waves.

Two black holes orbiting around each other emit gravitational waves and lose energy; eventually they come together and collide to produce a black hole that is initially highly deformed. Gravitational waves from a deformed black hole come out not in one tone but in a mixture of a number of different tones, very much like the dying tones of a ringing bell. Now, researchers from Cardiff University have discovered a new property of black holes: their dying tones could reveal the cosmic crash that produced them.

The frequency of each tone and rate at which the tones decay depend only on the two parameters that characterize a black hole: its mass and how rapidly it spins. Therefore scientists have long believed that by detecting the spacetime ripples of a black hole and measuring their frequencies one can measure the mass and spin of a black hole without going anywhere near it.

Ioannis Kamaretsos, Mark Hannam and B. Sathyaprakash of Cardiff University used Cardiff's powerful ARCCA cluster to perform a large number of computer simulations of a pair of black holes crashing against each other, and found that the different tones of a ringing black hole can actually tell us much more.

"By comparing the strengths of the different tones, it is possible not only to learn about the final black hole, but also the properties of the original two black holes that took part in the collision," explained Kamaretsos, who performed the simulations as part of his PhD research."It is exciting that the details of the late inspiral and merger are imprinted on the waves from the deformed final black hole. If General Relativity is correct, we may be able to make clear how very massive black holes in the centers of galaxies have shaped galactic evolution.

We never guessed it would be possible to weigh two black holes after they've collided and merged," said Hannam.* "We might even be able to use these results to test Einstein's general theory of relativity. We can compare the waves we observe from the orbiting black holes with the waves from the merged black hole, and check whether they are consistent," said Professor B Sathyaprakash. "It is quite remarkable. As in any new research, our finding opens up new questions: how accurately can we measure the parameters of the progenitor binary, whether our results hold good for more generic systems where initial black hole spins are arbitrarily oriented, etc. We will be addressing these questions in the coming years.

"Advanced gravitational wave detectors that are currently being built will provide us an opportunity to test our predictions in the coming decade."

Their research opens up a new avenue for studying the properties of the binary that produced the final black hole even when the binary itself is not visible to a gravitational wave detector. Future gravitational wave detectors should be able to study black holes far heavier than what was thought possible before and hence enhance their science reach.

The Daily Galaxy via

Image credit:


They'd better detect an actual gravity wave before they start talking about all the Nobel prize winning things that gravity waves are going to show them....

Cheers Grunt! Exactly what I was about to post....

"Gravitational waves" are just magnetohydrodynamical movements around a swirling centre in a 3D spherical magnetic circuit - which modern physicists call "black holes" because they are stuck in their significant outdated gravity-models.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)