Weekend Feature: When Dark Energy 'Turned On' in the Universe
Follow the Daily Galaxy
Add Daily Galaxy to igoogle page AddThis Feed Button Join The Daily Galaxy Group on Facebook Follow The Daily Galaxy Group on twitter
 

« From the X-Files Dept: Saturday's 'Comment of the Day' | Main | Weekend Feature: 'Lucy' Discovered to Co-Exist With Tree-Climbing 'Species' »

March 31, 2012

Weekend Feature: When Dark Energy 'Turned On' in the Universe

 

          Physics

Some six billion light years distant, almost halfway from now back to the big bang, the universe was undergoing an elemental change. Held back until then by the mutual gravitational attraction of all the matter it contained, the universe had been expanding ever more slowly. Then, as matter spread out and its density decreased, dark energy took over and expansion began to accelerate.

Accelerating expansion was announced less than 14 years ago by both the Supernova Cosmology Project (SCP) based at Berkeley Lab and the competing High-z Supernova Search Team, a discovery that resulted in 2011 Nobel Prizes for the SCP's Saul Perlmutter and High-z Team members Brian Schmidt and Adam Riess. Acceleration may result from an unknown something dubbed "dark energy" – or, dark energy may be just a way of saying we don't understand how gravity really works.

The first step in finding out is to establish a detailed history of expansion. Unlike supernova searches, which depend on the brightness of exploding stars, BOSS uses a technique called baryon acoustic oscillation (BAO) to determine the distances to faraway .

Baryon acoustic oscillation measures the angle across the sky of structures of known size, the peaks where galaxies cluster most densely in the network of filaments and voids that fill the universe. Since these density peaks recur regularly, the angle between appropriate pairs of galaxies as precisely measured from Earth reveals their distance – the narrower the apparent angle, the farther away they are.

Knowing the distance to an object tells its age as well, since its light travels from there to here at known speed. And the redshift of the light reveals how the universe has expanded since that time, as expansion stretches space itself; the wavelength of light traveling through space toward Earth stretches proportionally, becoming redder and revealing the since the light left its source.

Today BOSS, the Baryon Oscillation Spectroscopic Survey, the largest component of the third Sloan Digital Sky Survey (SDSS-III), announced the most yet of the distance scale of the during the era when turned on.

"We've made precision measurements of the large-scale structure of the universe five to seven billion years ago – the best measure yet of the size of anything outside the Milky Way," says David Schlegel of the Physics Division at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), BOSS's principal investigator. "We're pushing out to the distances when dark energy turned on, where we can start to do experiments to find out what's causing accelerating expansion."

"BOSS's first major cosmological results establish the accurate three-dimensional positions of 327,349 massive galaxies across 3,275 square degrees of the sky, reaching as far back as redshift 0.7 – the largest sample of the universe ever surveyed at this high density," says Martin White of Berkeley Lab's Physics Division, a professor of physics and astronomy at the University of California at Berkeley and chair of the BOSS science survey teams. "BOSS's average redshift is 0.57, equivalent to some six billion light-years away. BOSS gives that distance to within 1.7 percent – 2,094 megaparsecs plus or minus 34 megaparsecs – the most precise distance constraint ever obtained from a galaxy survey."

The origin of BAO, the regular clustering of ordinary matter (called "baryons" by astronomical convention), was the pressure of ("acoustic") moving through the universe when it was still so hot that light and matter were mixed together in a kind of soup, in which the sound waves created areas of regularly varying density ("oscillation"). By 380,000 years after the big bang, expansion had cooled the soup enough for ordinary matter to condense into hydrogen atoms (invisible dark matter was also part of the soup) and for light to go its separate way.

BOSS's data on galaxy clustering and redshifts can be applied not only to BAO but also to a separate technique called "redshift space distortions" – a direct test of gravity that measures how fast neighboring galaxies are moving together to form galaxy clusters.

What if dark energy isn't an unknown force or substance, but instead a shortcoming of Albert Einstein's , our best-yet theory of gravity? General Relativity predicts how fast galaxies should be moving toward one another in galaxy clusters, and, in the aggregate, how fast the structure of the universe should be growing. Any departure from its predictions would mean the theory is flawed.

 "We depend on redshift to know expansion rates and how structure was growing at different times in the past," says Beth Reid, a Hubble Fellow at Lawrence Berkeley National Laboratory who directed the BOSS study of redshift space distortions. "But redshifts aren't uniform. Galaxies are carried along in the Hubble flow as the universe expands, but they also have their own velocities. They tend to fall toward denser regions, for example. Because the ones on the far side of a dense region are coming toward us, their redshift makes them look closer than they really are; the opposite is true for the galaxies on the near side, which are falling away from us – they look farther away."

Statistical analysis of the redshifts of the hundreds of thousands of galaxies in the BOSS dataset can take into account the peculiarities of local variation and still produce a dependable measure of distance, the Hubble expansion rate, and the growth rate of structure in the universe. With these techniques, Reid and her colleagues have measured gravity on a scale of 100 million light years, far larger than the most accurate gravity measure yet, which is based on the distance from Earth to the moon.

BOSS obtained these best-yet measures with the wide-field Sloan Telescope at the Apache Point Observatory in New Mexico, designed especially for galaxy surveys but mounting a spectrograph far more sophisticated than was available to earlier SDSS surveys.

"The 2.5-meter Sloan Telescope remains the world's premier facility for wide-field spectroscopy because it uses fiber-fed spectrographs, which offer a huge numerical advantage," says Natalie Roe, director of Berkeley Lab's Physics Division and instrument scientist for BOSS, who directed construction of the new spectrographs.

"All the data collected by BOSS flows through a data-processing pipeline at Berkeley Lab," says Stephen Bailey of the Physics Division, who describes himself as the "baby sitter of the pipeline." Working with Schlegel at Berkeley Lab and Adam Bolton at the University of Utah, Bailey "turns the data into something we can use – catalogues of the hundreds of thousands galaxies, eventually well over a million, each identified by their two-dimensional positions in the sky and their redshifts." The data are processed and stored on the Riemann computer cluster, operated by Berkeley Lab's High-Performance Computing Services group.

The current crop of BOSS papers is based on less than a quarter of the data BOSS will continue to collect until the survey ends in 2014. So far, all lines of inquiry point toward the so-called "concordance model" of the universe: a "flat" (Euclidean) universe that bloomed from the 13.7 billion years ago, a quarter of which is cold dark matter – plus a few percent visible, ordinary, baryonic matter (the stuff we're made of). All the rest is thought to be dark energy in the form of Einstein's cosmological constant: a small but irreducible energy of puzzling origin that's continually stretching space itself.

But it's way too soon to think that's the end of the story, says Schlegel. "Based on the limited observations of dark energy we've made so far, the cosmological constant may be the simplest explanation, but in truth, the cosmological constant has not been tested at all. It's consistent with the data, but we really have only a little bit of data. We're just beginning to explore the times when dark energy turned on. If there are surprises lurking there, we expect to find them."

The Daily Galaxy via Lawrence Berkeley National Laboratory

The image at the top of the page courtesy of Basler Cast

View Today's Hot Tech News Video from IDG -Publishers of PC World, MacWorld, and Computerworld--Top Right of Page  

To launch the video click on the Start Arrow. Our thanks for your support! It allows us to bring you the news daily about the discoveries, people and events changing our planet and our knowledge of the Universe.

 

Comments

I wonder why after the 'BIG BAND', the matter created didn't clump together,
due to gravitational attraction. Why expand?

turn female high popular estrogen carbohydrates encyclopedia build important debate contain mclish actor substance main physique exercise hyper compound supplement.

Explanation of light speed, "c". Yep, to us standing on Earth, it's fast. For the universe, it's creepin' slower than a turtle. Ok, everything is relative. Whatever. It takes only nine minutes to get from sun to Earth. I was out backpacking through the Appalachain mountains and taking a break, I asked a guy cutting wood for a living one day why light went so fast and covered the Earth to sun distance, 91 million miles, in only nine minutes. His reply was, "Well hell, it's goin' down hill all the way! Can't you see that?" I rest my case. He should be nominated for a pull it surprise in that he was pulling my leg. Further conversation with him, he was on summer break from college studying masters in physics! He didn't look the part, goes to show you, you can't judge a man by his looks. Hawkin be dah example.


Post a comment

« From the X-Files Dept: Saturday's 'Comment of the Day' | Main | Weekend Feature: 'Lucy' Discovered to Co-Exist With Tree-Climbing 'Species' »




1


2


3


4


5


6


7


8





9


11


12


13


14


15

Our Partners

technology partners

A


19


B

About Us/Privacy Policy

For more information on The Daily Galaxy and to contact us please visit this page.



E