China and Russia to Launch Search for Cause of Mars Vanished Lakes and Oceans
Follow the Daily Galaxy
Add Daily Galaxy to igoogle page AddThis Feed Button Join The Daily Galaxy Group on Facebook Follow The Daily Galaxy Group on twitter
 

« CERN's Search for a "New Physics" --Could the Higgs Boson be a Mirage? | Main | EcoAlert: CERN Says Cosmic Rays from Supernovas May Trigger Cloud Formation »

August 25, 2011

China and Russia to Launch Search for Cause of Mars Vanished Lakes and Oceans

6a00d8341bf7f753ef0148c73f74d8970c-800wi


China's first Mars probe is expected to be launched in October this year in a joint operation with Russia to study the causes of Mars once abundant water, after a two-year delay, the People's Daily reported Sunday. The image above is from a suite of Mars orbiters that combined forces to create a new geologic map of Mars that adds to evidence the red planet once hosted expansive lakes.

The probe, Yinghuo-1, was due to blast off in October 2009 with Russia's "Phobos Explorer" from the Baikonur Cosmodrome in Kazakhstan but the launch was postponed, the official Xinhua news agency said. The report said the blast-off had been pushed back to October this year, and added that China planned to launch a solo Mars probe in 2013.

According to previous reports, the orbiter is due to probe the Martian space environment with a special focus on what happened to the water that appears to have once been abundant on the planet's surface.

Satellite images suggest that Mars was warm enough to sustain lakes three billion years ago, a period that was previously thought to be too cold and arid to sustain water on the surface.
The research, by a team from Imperial College London and University College London (UCL), suggested that during the Hesperian Epoch, approximately 3 billion years ago, Mars had lakes made of melted ice, each around 20km wide, along parts of the equator.

Earlier research had suggested that Mars had a warm and wet early history but that between 4 billion and 3.8 billion years ago, before the Hesperian Epoch, the planet lost most of its atmosphere and became cold and dry.

In the new study, the researchers analysed detailed images from NASA's Mars Reconnaissance Orbiter, which is currently circling the red planet, and concluded that there were later episodes where Mars experienced warm and wet periods.

3D virtual reality video of Ares Vallis, which is a giant gorge that runs 2000 km across the equator of Mars. The lakes and their interconnecting channels can be seen a third of the way through the video. The researchers say that there may have been increased volcanic activity, meteorite impacts or shifts in Mars' orbit during this period to warm Mars' atmosphere enough to melt the ice. This would have created gases that thickened the atmosphere for a temporary period, trapping more sunlight and making it warm enough for liquid water to be sustained.

The researchers used the images from the Mars Reconnaissance Orbiter to analyse several flat-floored depressions located above Ares Vallis, which is a giant gorge that runs 2,000 km across the equator of Mars. Scientists have previously been unable to explain how these depressions formed, but believed that the depressions may have been created by a process known as sublimation, where ice changes directly from its solid state into a gas without becoming liquid water. The loss of ice would have created cavities between the soil particles, which would have caused the ground to collapse into a depression.

In the new study, the researchers analysed the depressions and discovered a series of small sinuous channels that connected them together. The researchers say these channels could only be formed by running water, and not by ice turning directly into gas.

The scientists were able to lend further weight to their conclusions by comparing the Mars images to images of thermokarst landscapes that are found on Earth today, in places such as Siberia and Alaska. Thermokarst landscapes are areas where permafrost is melting, creating lakes that are interconnected by the same type of drainage channels found on Mars.

The team believe the melting ice would have created lakes and that a rise in water levels may have caused some of the lakes to burst their banks, which enabled water to carve a pathway through the frozen ground from the higher lakes and drain into the lower lying lakes, creating permanent channels between them.

Professor Jan-Peter Muller, Mullard Space Science Laboratory, Department of Space Climate Physics at University College London, was responsible for mapping the 3D shape of the surface of Mars. He adds:

"We can now model the 3D shape of Mars' surface down to sub-metre resolution, at least as good as any commercial satellite orbiting the Earth. This allows us to test our hypotheses in a much more rigorous manner than ever before."

The researchers determined the age of the lakes by counting crater impacts, a method originally developed by NASA scientists to determine the age of geological features on the moon. More craters around a geological feature indicate that an area is older than a region with fewer meteorite impacts. In the study, the scientists counted more than 35,000 crater impacts in the region around the lakes, and determined that the lakes formed approximately three billion years ago. The scientists are unsure how long the warm and wet periods lasted during the Hesperian epoch or how long the lakes sustained liquid water in them.
.
The researchers say their study may have implications for astrobiologists who are looking for evidence of life on Mars. The team say these lake beds indicate regions on the planet where it could have been warm and wet, potentially creating habitats that may have once been suitable for microbial life. The team say these areas may be good targets for future robotic missions.

The next step will see the team extend their survey to other areas along the equator of Mars so that they can ascertain how widespread these lakes were during the Hesperian Epoch. The team will focus their surveys on a region at the mouth of Ares Vallis called Chryse Planitia, where preliminary surveys of satellite images have suggested that this area may have also supported lakes.

China has already begun probing the moon and the Mars probe will be the next step in its ambitious space exploration program, which it aims to be on a par with those of the United States and Russia.

The Daily Galaxy via Imperial College of London and AFP

Image credit: USGS -Using data from the Viking, Mars Odyssey, and Mars Global Surveyor orbiters, scientists created a false-color picture of rocks and minerals in the Hellas Planitia region in Mars's southern hemisphere. The map reveals sedimentary deposits that match what would be found as material gets washed downhill into standing bodies of water. These deposits date back to between 4.5 and 3.5 billion years ago, to a period when scientists think Mars could have hosted liquid water.

Comments

There have it-the US is officialy out of the running for manned planetary exploration/colonization. Mars will be truly a Red Planet.

Wow, that makes a whole lot of sense when you think about it.

www.anon-toys.cz.tc

My first comment is that this article is amazingly poorly written. My second comment is that maybe having the Chinese get to Mars first will be a good idea, because if we did, because of the cancer of political correctness, the first person to set foot on the planet would be named Shaniqua Washington.

These 2 countries should try to feed and educate their populaces before wasting their $$$$$ in space. Completely ludicrous.

We are already running out of this planet if you think of it, need not one but a dozen more!

I have never really thought that Mars can have lakes and oceans - this is such a strange idea))) for such a hot planet)))


Post a comment

« CERN's Search for a "New Physics" --Could the Higgs Boson be a Mirage? | Main | EcoAlert: CERN Says Cosmic Rays from Supernovas May Trigger Cloud Formation »




1


2


3


4


5


6


7


8





9


11


12


13


14


15

Our Partners

technology partners

A


19


B

About Us/Privacy Policy

For more information on The Daily Galaxy and to contact us please visit this page.



E