Rare, Apocalyptic Supernova Ocurred 160 Million Years Ago
The Daily Flash -Sci, Space, Tech (3/02)

Earth Would Be a Flashing "Life Exists Here!" Billboard to ET Astronomers


In two new videos from NASA's Deep Impact spacecraft, bright flashes of light known as sun glints act as beacons signaling large bodies of water on Earth. These observations give scientists a way to pick out planets beyond our solar system (extrasolar planets) that are likely to have expanses of liquid, and so stand a better chance of having life. '

These sun glints are like sunshine glancing off the hood of a car. We can see them reflecting off a smooth surface when we are positioned in just the right way with respect to the sun and the smooth surface. On a planetary scale, only liquids and ice can form a surface smooth enough to produce the effect—land masses are too rough—and the surface must be very large. To stand out against a background of other radiation from a planet, the reflected light must be very bright. We won't necessarily see glints from every distant planet that has liquids or ice.

"But these sun glints are important because, if we saw an extrasolar planet which had glints that popped up periodically, we would know that we were seeing lakes, oceans or other large bodies of liquid, such as water," says Drake Deming, of NASA's Goddard Space Flight Center. Deming is the deputy principal investigator who leads the team that works on the Extrasolar Planet Observations and Characterization (EPOCh) part of Deep Impact's extended mission, called EPOXI. "And if we found large bodies of water on a distant planet, we would become much more optimistic about finding life."

One of EPOCh's goals is to observe the Earth from far away—in this case, about 11 million miles away—so that we know what an Earth-like planet would look like when viewed from our spacecraft. The images in these videos were collected when the spacecraft was close enough to resolve some of Earth's features, but at the same time, Earth could be treated as a very distant, single point. "This allows us to properly simulate what we would have observed if Earth were an extrasolar planet," says Michael A'Hearn, principal investigator for EPOXI.

The researchers expected to see the sun glints but were surprised by the intensity and small focus of some, says Goddard's Richard K. Barry. Glints appeared over oceans, most likely in relatively calm patches, and over a few land masses, probably caused by large inland lakes. Barry, who is leading the Earth-glint research effort, is putting together a catalog that will relate each glint to an exact location on Earth.

Together, the new videos provide the first view of Earth for a full rotation from the north pole (shown in one video) and south pole (the second video). The resolution is high enough to distinguish land masses, bodies of water and clouds. Each 16-second video is a compilation of a series of green, blue and near-infrared images taken every 15 minutes on a single day. Each is also the end product of months of planning, sophisticated data processing and analysis by the team.

The choice of infrared light, which is beyond the range of human sight, instead of visible red produces a better contrast between land and water. "People think of land as being greenish, but that's because our eyes aren't sensitive in the infrared," Deming explains. "Vegetation actually shows up better in the infrared."

Seen from very far away, Earth looks like a blue dot. "But the blue comes from Rayleigh scattering in our atmosphere rather than from the oceans," says Nicolas Cowan, an EPOCh team member at the University of Washington. "That means that our planet appears blue even to an observer located above the North Pole, despite the fact that there isn't always much ocean in sight. As Earth spins, different surface features rotate in and out of view, causing the color of the blue dot to change slightly from one hour to the next."

For an observer above the pole, most of the visible part of Earth is covered in snow, ice and clouds. From far away, these appear grayish and are hard to tell apart because they are all basically water molecules in different forms. "But when a large expanse of bare land, like the Sahara Desert, rotates into view, Earth gets a bit redder because continents reflect near infrared light relatively well," Cowan explains.

Given just this limited amount of information, the researchers could begin to describe an extrasolar planet's surface—perhaps even infer the existence of oceans and continents.

Of course, gathering this type of information about an exoplanet is a big undertaking. Once gathered, though, such data could point scientists toward the best targets to investigate first. "This is just the first step in trying to understand the nature of the surfaces of extrasolar planets," says A'Hearn.

Meanwhile, ss astronomers become more adept at hunting for, and finding, exoplanets orbiting stars beyond the Solar System, an international team of astronomers has figured out just what alien eyes might see using the increasingly sophisticated technologies being developed on Earth.

"Maybe somebody's looking at us right now, finding out what our rotation rate is -- that is, the length of our day," said Sara Seager, associate professor of physics and the Ellen Swallow Richards Associate Professor of Planetary Sciences at MIT.

According to the team's analysis, among other things alien astronomers could probably tell that our planet's surface is divided between oceans and continents, and learn a little bit about the dynamics of our weather systems. The team is headed by Seager, along with Enric Palle and colleagues at the Instituto de Astrofísica de Canarias, in Spain, and Eric Ford of the University of Florida,

The 1000 plus exoplanets that have been discovered so far by the Kepler Space Telescope Mission have been indirectly observed by looking at the influence they exert on stars they orbit. But even with the most advanced telescopes planned by Earth's astronomers for use over the next several years, a planet orbiting another star would only appear as a single pixel. By comparison, a simple cellphone camera typically takes pictures with about a million pixels, or one megapixel. However, a great deal of information about a planet can be gleaned from that single pixel and the way it changes over time.

The way of analyzing the data that Seager and her co-authors studied would work for any world that has continents and bodies of liquid on its surface plus clouds in its atmosphere, even if those were made of very different materials on an alien world. For example, icy worlds with seas of liquid methane, like Saturn's moon Titan, or very hot worlds with oceans of molten silicate (which is solid rock on Earth), would show up similarly across the vastness of space.

The key, the astronomers learned after studying data from Earth's weather satellites, is that while clouds vary from day to day, there are overall patterns that stay relatively constant, associated with where arid or rainy landmasses are. Detecting those repeating patterns would allow distant astronomers to figure out the planet's rotation period because a brightening associated with clouds above a particular continent would show up regularly once each "day," whatever the length of that day might be. Once the day's length is determined, then any variations in that period would reveal the changing weather--that is, clouds in a different place than the average.

Casey Kazan

Source: NASA/Goddard Space Flight Center


It would shine like a; "Diamond in the rough!"

The viewing angle is very limited but effective. The place to search for ET's is in the milky way's zone of avoidance. It obscures 10% of our view of the universe, but radio waves pass through. This is were most all of the gas and dust is, and as we know, the earth is really a ball of dust. If you look at any distant galaxy, they have dust rings around them. This is where to search for planets in a galaxy! If you randomly selected a planet in our galaxy, it would most likely be inside or near to the dust ring that orbits the galaxy, which is also along the zone of avoidance !

Does the Zone of Avoidance intersect at all with, say, Holo? It must!

The Zone of Avoidance conceals 10 percent of the sky, but contains MORE MATTER then the 90% view. Larger redshifts are strongly preferred at higher latitudes. Our galaxy is part of the Virgo Supercluster, and all of this is aligned into great walls, that conceal our view of the distance! Much gas and dust obscures radiation, and the best theory today of the Universe, is my REAL HOLOGRAPHIC GALAXY model. Along this zone of avoidance, a larger Hypercluster with an enormous AGN black hole exists. The hotter temp's in the early universe, and the first stars and galaxies to form, are not measured within the zone of avoidance, but outside of it where the huge hypercluster floods the sky with microwave radiation that penetrates through the zone of avoidance too. The complete logic and facts are on my website, and the big-bang is a bunch of nonsense. It is easier to conceive of an infinite hierarchy of 3-d intersecting cosmic filaments, that form no maximum nor minimum size scales.

Yea but we would be a flashing billboard for like a couple hundred years out of the 13.75 billion years that we know of. Once we realize that silence and stealth is key we will change our ways and go to the stars to learn more and learn more about the origins of life and existence and also how life forms and develops.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.


Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)