ISS Celebrating 10 Years of Human Habitation
"Good Luck, Mr Gorski" -A New Short-Film Based on a Legend from the Apollo 11 Moon Mission

Saturn's Rings Mimic Behavior of the Milky Way

Pia11669-slide

“We have found what we hoped we'd find when we set out on this journey with Cassini
nearly 13 years ago: visibility into the mechanisms that have sculpted not only Saturn's rings,
but celestial disks of a far grander scale, from solar systems, like our own, all the way to the
giant spiral galaxies."

Carolyn Porco, Cassini imaging team lead, based at the Space Science Institute, Boulder, Colorado


Images of Saturn’s most massive ring, the B ring (above), captured by NASA's Cassini spacecraft have revealed the answer to a long standing mystery of why one of the most dynamic regions in Saturn's rings has such an irregular and varying shape: the rings, scientists discovered, are behaving like a miniature version of our own Milky Way galaxy.

This new insight, garnered from images  may answer a second long-standing question: the cause of the bewildering variety of structures seen throughout the very densest regions of Saturn’s rings.

Another finding from new images of the B ring’s outer edge was the presence of at least two perturbed regions, including a long arc of narrow, shadow-casting peaks as high as 3.5 kilometers (2 miles) above the ring plane. The areas are likely populated with small moons that might have migrated across the outer part of the B ring in the past and got trapped in a zone affected by the moon Mimas’ gravity. This process is commonly believed to have shaped the present-day solar system.

Since NASA’s Voyager spacecraft flew by Saturn in 1980 and 1981, scientists have known
that the outer edge of the planet’s B ring was shaped like a rotating, flattened football by the
gravitational perturbations of Mimas. But it was clear, even in Voyager’s findings, that the
outer B ring’s behavior was far more complex than anything Mimas alone might do.

Analysis of thousands of Cassini images of the B ring taken over a four-year period has
revealed the source of most of the complexity are at least three additional, independently
rotating wave patterns, or oscillations, that distort the B ring’s edge. These oscillations, with
one, two or three lobes, are not created by any moons. They have instead spontaneously
arisen, in part because the ring is dense enough, and the B ring edge is sharp enough, for
waves to grow on their own and then reflect at the edge.

“These oscillations exist for the same reason that guitar strings have natural modes of
oscillation, which can be excited when plucked or otherwise disturbed,” said Joseph Spitale,
an imaging team associate at the Space Science Institute. “The ring, too, has its own natural oscillation frequencies, and that’s what we’re observing.”

Astronomers believe such “self-excited” oscillations exist in other disk systems, like spiral
disk galaxies and proto-planetary disks found around nearby stars, but they have not been
able to directly confirm their existence. The new observations confirm the first large-scale
wave oscillations of this type in a broad disk of material anywhere in nature.

Self-excited waves on small, 100-meter (300-foot) scales have been previously observed by
Cassini instruments in a few dense ring regions and have been attributed to a process called
“viscous overstability.” In that process, the ring particles’ small, random motions feed energy
into a wave and cause it to grow. The new results confirm a Voyager-era predication that this
same process can explain all the puzzling chaotic waveforms found in Saturn’s densest rings,
from tens of meters up to hundreds of kilometers wide.

“Normally viscosity, or resistance to flow, damps waves -- the way sound waves traveling
through the air would die out,” said Peter Goldreich, a planetary ring theorist at the
California Institute of Technology in Pasadena. “But the new findings show that, in the
densest parts of Saturn’s rings, viscosity actually amplifies waves, explaining mysterious
grooves first seen in images taken by the Voyager spacecraft.”

The two perturbed B ring regions found orbiting within Mimas’ zone of influence stretch
along arcs up to 20,000 kilometers (12,000 miles) long. The longest one was first seen last
year when the sun’s low angle on the ring plane betrayed the existence of a series of tall
structures through their long, spiky shadows. The small moons disturbing the material are
probably hundreds of meters to possibly a kilometer or more in size.

Vertical structures in the image below, among the tallest seen in Saturn's main rings, rise abruptly from the edge of Saturn's B ring to cast long shadows on the ring in this image taken by Cassini two weeks before the planet's August 2009 equinox. Image credit: NASA/JPL-Caltech/SSI.

Pia11668-slide

Casey Kazan via NASA/JPL   New images and movies of the outer B ring edge can be found at
http://www.nasa.gov/cassini, http://saturn.jpl.nasa.gov and http://ciclops.org .

Comments

So Saturn's rings possess their own natural oscillation frequencies and behave like the strings on a guitar.

THE MILKY WAY MATRIX.

Of course Saturn´s rings mimic the structure of our Solar System and even the structure of the Milky Way!

- "Once upon a time" our Solar System was created directly out of the Milky Way centre and therefore everything in our Solar System mimic the the forces and movements of our Milky Way.

- The Solar System mimic the disc of the Milky Way - and it is obviously NOT created via a presolar accretion disc that suddenly decided to collapse.

Natural Philosopher
Ivar Nielsen

http://www.redorbit.com/images/gallery/sun/solar_eclipse_february_6th_1980/6/9/index.html

i was born on this day
and i know the confection

peace

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)