You Create the Caption
Operation Deep Freeze: US Navy Supporting Antarctica Science Expeditions

400-Million-Year-Old Mystery: Giant Tree-like Object in Epoch Before Trees Existed

070423_prototaxites_02  The giant fossil Prototaxites is a big 400-million year old mystery. The fossils resemble tree trunks, and yet they are from a time before trees existed. The stable carbon isotope values are similar to those of fungi, but the fossils do not display structures usually found in fungi. Hence, the enigma. 

Prototaxites have sparked controversy for more than a century. Originally classified as a conifer, scientists later argued that it was instead a lichen, various types of algae or a fungus. Whatever it was, it stood in tree-like trunks more than 20 feet tall, making it the largest-known organism on land in its day.

“No matter what argument you put forth, people say, well, that’s crazy. That doesn’t make any sense,” said C. Kevin Boyce, Assistant Professor in Geophysical Sciences at the University of Chicago. “A 20-foot-tall fungus doesn’t make any sense. Neither does a 20-foot-tall algae make any sense, but here’s the fossil.”

Plant-like polymers have been found in the fossils, but nutritional evidence supports heterotrophy, which is not commonly found in plants. These are a few of the confounding factors surrounding the identification of Prototaxites fossils. 

Prototaxites existed during the Late Silurian to Late Devonian periods-- approximately 420-370 million years ago (ma). Prototaxites fossils have a consistent tubular anatomy, composed of primarily unbranched, non-septate tubes, arranged in concentric or eccentric rings, giving the fossils an appearance similar to that of a cross-section of a tree trunk. The fossil "trunks" vary in size and may be up to 8.8 m long and 1.37 m in diameter, making Prototaxites the largest organism on land during the Late Siluarian and Devonian periods.

Dr. Linda Graham, one of the world's experts in the evolutionary origin of land plants at the University of Wisconsin, and her colleagues believe that they have resolved this long-standing mystery.

Their hypothesis is that Prototaxites fossils may be composed of partially degraded wind-, gravity-, or water-rolled mats of liverworts that are associated with fungi and cyanobacteria. This resembles the mats produced by the modern liverwort genus Marchantia. The authors tested their hypothesis by treating Marchantia polymorpha in a manner to reflect the volcanically-influenced, warm environments typical of the Devonian period and compared the resulting remains to Prototaxites fossils. Graham and her colleagues investigated the mixotrophic ability of M. polymorpha by assessing whether M. polymorpha grown in a glucose-based medium is capable of acquiring carbon from its substrate.

"For our structural comparative work," Graham said, "we were extremely fortunate to have an amazing thin slice of the rocky fossil, made in 1954 by the eminent paleobotanist Chester A. Arnold."

Their structural and physiological studies showed that the fossil Prototaxites and the modern liverwort Marchantia have many similarities in their external structure, internal anatomy, and nutrition. Despite being subjected to conditions that would promote decomposition and desiccation, the rhizoids of M. polymorpha survived degradation, and with the mat rolled, created the appearance of concentric circles. The fungal hyphae associated with living liverworts also survived treatment, suggesting that the branched tubes in fossils may be fungal hyphae. The very narrow tubes in the fossils resemble filamentous cyanobacteria that the researchers found wrapped around the rhizoids of the decaying M. polymorpha.
 
"We were really excited when we saw how similar the ultrastructure of our liverwort rhizoid walls was to images of Prototaxites tubes published in 1976 by Rudy Schmid," Graham said.

In their investigations into the nutritional requirements of M. polymorpha, Graham and her colleagues found that the growth of M. polymorpha in a glucose-based medium was approximately 13 times that seen when the liverwort was grown in a medium without glucose. Stable carbon isotope analyses indicated that less than 20% of the carbon in the glucose-grown liverwort came from the atmosphere. The stable carbon isotope values obtained from M. polymorpha grown with varying amounts of cyanobacteria present span the range of values reported for Prototaxites fossils. Taken together, these results demonstrate that the liverworts have a capacity for mixotrophic nutrition when glucose is present and that mixotrophy and/or the presence of cyanobacteria could be responsible for the stable carbon isotope values obtained from Prototaxites.

Graham and her colleagues' results demonstrate that liverworts were important components of Devonian ecosystems. Their results support previous hypotheses that microbial associations and mixotrophy are ancient plant traits, rather than ones that have evolved recently.

More information: The full article in the link mentioned is available for no charge for 30 days at http://www.amjbot.org/cgi/content/full/97/2/268

Jason McManus via the American Journal of Botany

Comments

First time I see Somalian scientist not pirate!

The mystery finally reveals.

so....?
We've determined that they MUST be 20 foot Fungi?

The scientists seem desperate to fit a square peg in a round hole. Why is it so hard for them to consider that this might be another form of life that did not have evolutionary descendants?

So why is it their first assumption that it can't be a tree? Wouldn't it be more feasible that their dating method, or their presumption that trees couldn't have existed that long ago, is wrong? Sounds like they need to revise their theories to me.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Your Information

(Name is required. Email address will not be displayed with the comment.)